量子反常霍尔效应概念股,什么是量子反常霍尔效应

股票行情知识网>股票行情问答
发布时间: 2020-03-27 06:40:58 发布作者:

什么是量子反常霍尔效应

与量子霍尔效应相关的发现之所以屡获学术大奖,是因为霍尔效应在应用技术中特别重要。人类日常生活中常用的很多电子器件都来自霍尔效应,仅汽车上广泛应用的霍尔器件就包括:信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器等。例如用在汽车开关电路上的功率霍尔电路,具有抑制电磁干扰的作用。因为汽车的自动化程度越高,微电子电路越多,就越怕电磁干扰。而汽车上有许多灯具和电器件在开关时会产生浪涌电流,使机械式开关触点产生电弧,产生较大的电磁干扰信号。采用功率霍尔开关电路就可以减小这些现象。 此次中国科学家发现的量子反常霍尔效应也具有极高的应用前景。量子霍尔效应的产生需要用到非常强的磁场,因此至今没有广泛应用于个人电脑和便携式计算机上——因为要产生所需的磁场不但价格昂贵,而且体积大概要有衣柜那么大。而反常霍尔效应与普通的霍尔效应在本质上完全不同,因为这里不存在外磁场对电子的洛伦兹力而产生的运动轨道偏转,反常霍尔电导是由于材料本身的自发磁化而产生的。 如今中国科学家在实验上实现了零磁场中的量子霍尔效应,就有可能利用其无耗散的边缘态发展新一代的低能耗晶体管和电子学器件,从而解决电脑发热问题和摩尔定律的瓶颈问题。这些效应可能在未来电子器件中发挥特殊作用:无需高强磁场,就可以制备低能耗的高速电子器件,例如极低能耗的芯片,进而可能促成高容错的全拓扑量子计算机的诞生——这意味着个人电脑未来可能得以更新换代。

量子自旋霍尔效应和反常霍尔效应的区别,求解!!!

1:“量子自旋霍尔效应”是指找到了电子自转方向与电流方向之间的规律,利用这个规律可以使电子以新的姿势非常有序地“舞蹈”,从而使能量耗散很低。

在特定的量子阱中,在无外磁场的条件下(即保持时间反演对称性的条件下),特定材料制成的绝缘体的表面会产生特殊的边缘态,使得该绝缘体的边缘可以导电,并且这种边缘态电流的方向与电子的自旋方向完全相关,即量子自旋霍尔效应

2:量子反常霍尔效应不同于量子霍尔效应,它不依赖于强磁场而由材料本身的自发磁化产生。在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。美国《科学》杂志于2013年3月14日在线发表这一研究成果。

(1、量子反常霍尔效应使得在零磁场的条件下应用量子霍尔效应成为可能;

2、这些效应可能在未来电子器件中发挥特殊的作用,可用于制备低能耗的高速电子器件。)

量子反常霍尔效应和量子霍尔效应有什么不同

量子反常霍尔效应和量子霍尔效应的区别:

1、定义不同

量子反常霍尔效应:量子反常霍尔效应不同于量子霍尔效应,它不依赖于强磁场而由材料本身的自发磁化产生。

量子霍尔效应:量子霍尔效应(quantum Hall effect)是量子力学版本的霍尔效应,需要在低温强磁场的极端条件下才可以被观察到,此时霍尔电阻与磁场不再呈现线性关系,而出现量子化平台。

2、意义不同

量子反常霍尔效应:量子反常霍尔效应的好处在于不需要任何外加磁场,这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。

量子霍尔效应:

整数量子霍尔效应:量子化电导e²/h被观测到,为弹道输运(ballistic transport)这一重要概念提供了实验支持。

分数量子霍尔效应:劳夫林与J·K·珍解释了它的起源。两人的工作揭示了涡旋(vortex)和准粒子(quasi-particle)在凝聚态物理学中的重要性。

3、发现不同

量子反常霍尔效应:2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。

量子霍尔效应:霍尔效应在1879年被E.H.霍尔发现,它定义了磁场和感应电压之间的关系。

参考资料来源:百度百科——量子反常霍尔效应

参考资料来源:百度百科——量子霍尔效应

量子反常霍尔效应

量子反常霍尔效应

在凝聚态物理领域,量子霍尔效应研究是一个非常重要的研究方向。量子反常霍尔效应不同于量子霍尔效应,它不依赖于强磁场而由材料本身的自发磁化产生。在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。美国《科学》杂志于2013年3月14日在线发表这一研究成果。

中国科学家发现了量子反常霍尔效应,杨振宁称这一发现是诺贝尔奖级的成果.如图所示, 厚度为h,宽度为

C

试题分析:A中金属导体中的自由电荷是带负电的电子,由电流方向向右可知电子的移动方向向左,根据左手定则,知这些自由电子受到向上的洛伦兹力而发生偏转,则上表面带负电,下表面带正电,下表面的电势高于上表面.故A错误;稳定时,电子受到的洛伦兹力与电场力相平衡,则evB=e ,解得U=vBh,而根据I=nevhd可知v= ,故U= ,故增大h,电势差不变,仅增大d时,上、下表面的电势差减小,故C是正确的;而仅增大I时,电势差应该增大,故D也是不对的。

求科普:量子反常霍尔效应!!!

我们首先来看下什么是量子霍尔效应:

量子霍尔效应,于1980年被德国科学家发现,是整个凝聚态物理领域中重要、最基本的量子效应之一。它的应用前景非常广泛。

在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,由于洛伦兹力的作用,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。产生的横向电压被称为霍尔电压,霍尔电压与施加的电流之比则被称为霍尔电阻。由于洛伦兹力的大小与磁场成正比,所以霍尔电阻也与磁场成线性变化关系。

1880年,霍尔在研究磁性金属的霍尔效应时发现,即使不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。反常霍尔效应与普通的霍尔效应在本质上完全不同,因为这里不存在外磁场对电子的洛伦兹力而产生的运动轨道偏转。反常霍尔电导是由于材料本身的自发磁化而产生的,因此是一类新的重要物理效应。

举例说明:我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗。而量子霍尔效应则可以对电子的运动制定一个规则,让它们在各自的跑道上“一往无前”地前进。“这就好比一辆高级跑车,常态下是在拥挤的农贸市场上前进,而在量子霍尔效应下,则可以在‘各行其道、互不干扰’的高速路上前进。”

然而,量子霍尔效应的产生需要非常强的磁场,“相当于外加10个计算机大的磁铁,这不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。”而量子反常霍尔效应的美妙之处是不需要任何外加磁场,在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。

评论:现在看明白了吧,量子霍耳效应和反常霍尔效应针对的是磁场对晶体管这类电子元件产生的热研究出来的解决办法,就是给电子的无规则运动轨迹套上个笼头,这个笼头就是外加磁场或者自身磁场,前者的优点是解决起来方便,但是不能小型化实用化,可以专用。后者是自己产生磁场,不需要外加磁场,缺点是自身磁材料贵,目前来说也没有进入高温化、实用化,但前景可人!!!

来看超导:

人们把处实现超导的过程于超导状态的导体称之为“超导体”。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中形成强大的电流,从而产生超强磁场。超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。

BCS理论认为:晶格的振动,称为声子(Phonon),使自旋和动量都相反的两个电子组成动量为零的库珀对,称为电声子交互作用,所以根据量子力学中物质波的理论,库珀对的波长很长以至于其可以绕过晶格缺陷杂质流动从而无阻碍地形成电流。巴丁、库珀、施里弗因此获得1972年的诺贝尔物理学奖。 不过,BCS理论并无法成功的解释所谓第二类超导,或高温超导的现象。

本质区别:

固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。平行电场和电流强度之比就是电阻率。大量的研究揭示:参加材料导电过程的不仅有带负电的电子,还有带正电的空穴。

其实霍尔效应就是把路给电子让出来,让后面的电子在比较空旷的空间里面前进,不和其它电子碰撞从而损失能量产生热;而超导是材料在低温的时候电子库伯对的波粒二象性的波动性使得电子对的流动绕过晶格障碍,本质上来说一个是使得电子在导体里面集中从而使得后面电子无障碍无碰撞,后者是低温的时候绕过障碍,不产生电阻。

最后来说,霍尔效应有电阻不产生热量或者热量少,超导是没有电阻了

关于量子反常霍尔效应?

这种反常表现在不需要磁场的参与--霍尔效应是磁场影响电流产生电场。

这种反常,对量子应用非常有利,摆脱了磁场的条件限制。

发现量子反常霍尔效应有什么意义?

中国科学家领衔的团队首次在实验上发现量子反常霍尔效应。这一发现或将对信息技术进步产生重大影响。在美国物理学家霍尔1880年发现反常霍尔效应133年后,终于实现了反常霍尔效应的量子化的观察,这一发现是相 理论计算得到霍尔电导关领域的重大突破,也是世界基础研究领域的一项重要科学发现。由于人们有可能利用量子霍尔效应发展新一代低能耗晶体管和电子学器件,这将克服电脑的发热和能量耗散问题,从而有可能推动信息技术的进步。然而,普通量子霍尔效应的产生需要用到非常强的磁场,因此应用起来将非常昂贵和困难。但量子反常霍尔效应的好处在于不需要任何外加磁场,这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。1980年,德国科学家冯·克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果分别于1985年和1998年获得诺贝尔物理学奖。 由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队在量子反常霍尔效应研究中取得重大突破,他们从实验中首次观测到量子反常霍尔效应,这是中国科学家从实验中独立观测到的一个重要物理现象,也是物理学领域基础研究的一项重要科学发现。

用户评价

相关推荐

本月点击排行

聚合标签

语音 股票黄线白线紫线 国内有中概股基金吗 增股 基金持股数量与持股市值 油价上涨股市的影响 小小伞股票垃圾 阴道内 a股流通股比例 汇纳科技千股千评 换手率 星期六股东人员 2017低价股 股票买卖的佣金吗 沙隆达a股票 几号 2019年股市4月5日休市吗 东安 完整版 大有股代表的动物 金珠 人民法院 贝塔 2016全球股市 冬天涨的股票 全球股市换手率 时候 2019股市行情分析 股票买卖软件50档 股市中打新中签是什么意思 中国股市的买点和卖点 北向资金大流出后股市走势 战况 股票美景图片大全 教我 ga 刀锋 后天 你说 稀土永磁股票龙头股